A Novel Framework for Early Pitting Fault Diagnosis of Rotating Machinery Based on Dilated CNN Combined With Spatial Dropout
نویسندگان
چکیده
Pitting corrosion of rotating machinery is one the most common faults in industrial engineering. The convolutional neural network (CNN) increasingly applied to fault diagnosis. However, conventional CNN method will reduce feature dimension collected signal and cause loss information during pooling process. In this paper, a new based on dilated combined with spatial dropout (DCSD) proposed diagnose early machinery. By filling convolution kernel, DCSD can increase receptive field without increasing number parameters while retaining more features raw vibration machine. To avoid eliminates adjacent elements strong correlation, Spatial Dropout adopted overfitting problem deep networks. pitting gears experiment was designed verify paper. data 6 different healthy states were effectiveness method. experimental results show that effectively distinguish pitting, diagnostic accuracy better than other popular learning methods.
منابع مشابه
A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain
The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...
متن کاملModel Based Fault Diagnosis in Rotating Machinery
A continuing task in engineering is to increase the reliability, availability and safety of technical processes and to achieve these fault diagnosis becomes an advanced supervision tool in the present industries. Vibration in rotating machinery is mostly caused by unbalance, misalignment, shaft crack, mechanical looseness and other malfunctions. The objective of this paper is to propose a model...
متن کاملRotating Machinery Fault Diagnosis Based on Wavelet Fuzzy Neural Network
According to complicated fault characteristic of rotating machinery, its fault diagnosis based on wavelet fuzzy neural network (WFNN) which combines wavelet packet analysis and fuzzy neural network is put forward. By using it, the fuzzy fault diagnosis of rotating machinery is realized. All the arithmetic process of WFNN is realized through the computer. The results of simulation and test indic...
متن کاملRotating Machinery Fault Diagnosis Based on Fuzzy Data Fusion Techniques
Various diagnostics methods have been applied to machinery condition monitoring and fault diagnosis, with far from satisfactory levels of accuracy. With the development of modern multi-sensor based data acquisition technology often used in advanced signal processing, more and more information is becoming available for the purposes of fault diagnostics and prognostics of machinery integrity. It ...
متن کاملFault Diagnosis for Rotating Machinery: A Method based on Image Processing
Rotating machinery is one of the most typical types of mechanical equipment and plays a significant role in industrial applications. Condition monitoring and fault diagnosis of rotating machinery has gained wide attention for its significance in preventing catastrophic accident and guaranteeing sufficient maintenance. With the development of science and technology, fault diagnosis methods based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3058993